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We propose to create a biexciton in a quantum dot by a coherent optical process using a frequency-sweeping
�chirped� laser pulse. In contrast to the two-photon Rabi flop scheme, the present method uses the adiabatic
state transfer through avoided level crossing. As a geometric control, the proposed process is robust against
pulse area uncertainty, detuning, and dephasing. The speed of the adiabatic operation is constrained by the
biexciton binding energy.
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I. INTRODUCTION

Semiconductor quantum dots �QDs� have manifold uses
in quantum information and computation. They have been
utilized to generate single photons1–6 with good
indistinguishability.7 More recently it has been proposed and
partially realized2,8–11 that QDs in two-exciton states, called
biexcitons, can be used to generate pairs of entangled pho-
tons by two-pathway cascade emission of photons.12 The en-
tanglement of photon pairs in this scheme was noted13 to be
imperfect because of the slight difference in energy between
the two single-exciton levels,14,15 which tells the which-
pathway information of the cascade emission. However, con-
siderable improvement has recently been made,16,17 which
suggests that the scheme should be of high experimental
value in quantum optics, quantum computation,18 and quan-
tum cryptography19,20 and can also be used to test founda-
tions of quantum mechanics.2 Biexciton is also of interest in
itself because it serves as the physical basis for a two-bit
conditional quantum logic gate.21

A number of works has already been done on the optical
coherent control of the single-exciton states in, e.g., InAs/
GaAs QDs �Refs. 22–26� and CdSe/ZnSe QDs.6 In the recent
experiments of optical coherent control of biexciton states,
two approaches were used. The first one applies two optical
beams each in resonance with the �g�→ �X� �ground-state-to-
single-exciton� and �X�→ �XX� �single-exciton-to-biexciton�
transitions.21,27 However, it was noted28 that a better ap-
proach is to apply degenerate pulses with frequency equal to
half the biexciton energy, such that the spontaneously emit-
ted photons have frequencies different from that of the exci-
tation pulse. This has been followed by recent works.28–30

Experiments have been done on both InAs/GaAs and CdSe/
ZnSe QDs, and the phenomenon of two-photon Rabi oscil-
lation is the prime indicator of successful control in these
experiments.

In this paper, we propose to use a frequency-sweeping
pulse31 for a geometric generation of a biexciton in a quan-
tum dot. The scheme is based on the adiabatic state transfer
from the ground state to the final biexciton state via avoided
energy-level crossing, in which the intermediate exciton is
largely bypassed. The utilization of level anticrossing fol-
lows the idea of the stimulated Raman adiabatic passage
�STIRAP� for adiabatic state transfer in a �-type three-level
system.32,33 But here since the exciton and biexciton transi-

tions couple to the same optical pulse, independent control of
the two transitions as required in the STIRAP is not feasible.
Instead, the frequency sweeping31 is proposed to realize the
adiabatic state evolution, which has been considered for ap-
plication in quantum information processing.34,35 The geo-
metric scheme bears the robustness against some uncertainty
in the system parameters such as energy levels and dipole
magnitude and in laser-pulse parameters such as amplitude,
shape, and frequency, which is unavoidable in realistic ex-
periments. Bypassing the intermediate single-exciton state
minimizes the possibility of generating single-photon emis-
sion which may contaminate an entangled photon pair. Con-
strained by the biexciton binding energy, the adiabatic state
transfer can be completed in picosecond timescales for a
typical CdSe quantum dot, and thus the effect of the exciton
dephasing can be largely avoided.

This paper is organized as follows: in Sec. II we formulate
the problem and explain the basic idea; in Sec. III we dem-
onstrate numerically the creation of a biexciton, which is
robust against small uncertainty in all parameters character-
izing the system and keeps the occupation of single-exciton
state relatively low; and in Sec. IV we show that dephasing,
modeled in the Lindblad formalism,36 only slightly reduces
the efficiency.

II. MODEL AND MECHANISM

The biexciton system can be modeled by a four-level sys-
tem: the ground state �g�, the biexciton state �XX�, and two
intermediate exciton states with different linear polarizations
�X� and �Y�.14,15 Because the two pathways of excitation,
�g�→ �X�→ �XX� and �g�→ �Y�→ �XX�, are independent and
can be implemented independently by applying different po-
larizations of lasers in experiments, we only consider
�g�→ �X�→ �XX� for simplicity.

The Hamiltonian is written as

H = �� + ���X��X� + 2��XX��XX�

+ ���t���X��g� + �XX��X�� + H.c.� , �1�

where � is half the energy between the ground state and the
biexciton, �+� is the energy of the exciton state �2� being
the biexciton binding energy�, and ��t�=�t exp�−i��−��t
+ i��t�� is the time-dependent optical coupling caused by a
laser pulse. We shall consider a chirped pulse with time-
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dependent frequency �−�− �̇�t� �see Fig. 1�a� for the enve-
lope �t and frequency sweeping �̇�t� of a chirped pulse�.
Here we have assumed that the exciton and the biexciton
transitions have the same dipole matrix element, which is a
good approximation for quantum dots with strong confine-
ment where the ground-state biexciton consists mostly of the
ground-state excitons.21 Actually, as will be discussed later,
the geometrical generation of the biexciton is robust against
parameter variation, so a small deviation of the biexciton
dipole moment from the exciton one has negligible effect on
the efficiency.

To consider the adiabatic state following under the driving
of a frequency-sweeping �chirped� pulse, we write the
Hamiltonian in a frequency-modulated rotating reference
frame as

H�t� = �− � − �̇�t� �t 0

�t � �t

0 �t � + �̇�t�
	 , �2�

in the time-dependent basis


e−i�t−i��t��g�,e−i�t�X�,e−i�2�−��t+i��t��XX�� .

When �t approaches zero, the eigenvectors of H�t� are the
three basis states, with time-dependent eigenvalues 
−�

− �̇�t� ,� ,�+ �̇�t�� in the rotating reference frame. We envis-
age that when �̇�t� sweeps from negative to positive �or the
opposite�, the ground state and the biexciton state would
cross at the degenerate point ��+ �̇�t�=0� �see dashed lines
in Fig. 1�b��. The degeneracy will be lifted if the optical
coupling �t is finite and the level crossing will be avoided
�see solid lines in Fig. 1�b��. For a slow-varying pulse, the
state initially at �g�, by adiabatic state transfer, would evolve
to the biexciton state �XX� at the end, bypassing the interme-
diate exciton state which is separated in energy �in the rotat-
ing reference frame� rather far away from the ground state
and the biexciton.

In the following, we choose the following specific func-
tional forms for pulse envelope �t and frequency sweeping
�̇�t� �Ref. 31�:

�t = A sech��t� , �3a�

�̇�t� = �� tanh��t� , �3b�

as shown in Fig. 1�a�. Using these waveforms, the adiabatic
eigenvalues of the Hamiltonian are computed and plotted in
Fig. 1�b�. As expected, the time-dependent eigenvector
sweeps from �g� to �XX� as the pulse frequency is swept from
above to below the two-photon resonance. We see that the
exciton state �X� does not participate in the level crossing as
its energy is far above the other two levels for the parameters
used. Thus it can be inferred that the occupation of �X� would
be kept low because the third eigenvalue � is separated from
the remaining two eigenvalues; the larger the biexciton bind-
ing energy 2�, the lower would be the occupation of the
intermediate exciton state �X�.

The occupations of different basis eigenvectors in the
evolution starting from the ground state are plotted in solid
lines in Fig. 1�c�. As this eigenvector changes from initially
�g� to finally �XX�, we expect this to be followed by the
actual physical system if the pulse is sufficiently slowly
varying.

It should be pointed out that, although we have chosen
specific waveforms in Eq. �3� for the pulse shape, other
choices are also possible provided that “anticrossing” similar
to Fig. 1 can be produced. For instance, Gaussian shape for
�t and linear frequency sweep could also be used.31 How-
ever, the waveforms in Eq. �3� show better adiabaticity and is
used in the simulation.

III. NUMERICAL SIMULATION

The adiabaticity can be kept in two ways: by increasing
the duration of process or the pulse amplitude A. The occu-
pation of intermediate state can also be suppressed by in-
creasing the duration. However, long duration is undesirable
in experiment because of dephasing. In the following we fix
the evolution duration of t� �−T ,T� and investigate the adia-
baticity of the state transfer as well as the intermediate-state
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FIG. 1. �Color online� �a� Laser-pulse amplitude and time-
dependent frequency as defined in Eq. �3�; �t and �̇�t� are in units
of half the biexciton binding energy �. �b� Time-dependent eigen-
values of Hamiltonian in Eq. �2� under the pulse in Eq. �3� �solid
lines� and when �t→0 �dashed lines�. The eigenvector correspond-
ing to each eigenvalue at the beginning and the end of the pulse is
indicated. �c� Occupations of different basis states during the evo-
lution starting from the ground state �g� calculated by the adiabatic
approximation �solid lines� and by the numerical integration of
Schrödinger equation �dots�. The parameters are such that A=0.6�,
�=0.06�, �=5, and �=0.
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population. We numerically solve the evolution 	�t�
=a�t��g�+b�t��X�+c�t��XX�, with the initial condition 	�0�
= �g�. An example is shown as dots in Fig. 1�c�. We see that
the actual evolution follows the adiabatic approximation
closely. Note that with ��10 meV in the case of
CdSe/ZnSe QDs,15,37 the duration is 2T�10 ps, which is
much shorter than the exciton dephasing time.

To investigate the robustness of the geometrical control,
we show in Fig. 2 the dependence of the final biexciton
population �c�T��2 on A �coupling magnitude�, ��
�frequency-sweeping amplitude�, � �biexciton binding en-
ergy divided by 2�, and � �detuning�. These plots have the
foreseen characteristics. The case ���0 corresponds to the
usual case of two-photon Rabi oscillation, in which the
population transfer depends sensitively on the pulse area A.
This is demonstrated in the peaks and troughs along ��=0
in Fig. 2�a�, which are smoothed out as frequency sweeping
is introduced. When the pulse amplitude A is too small
��t→0�, the process fails to be adiabatic for the level split-
ting at the anticrossing point is small. As shown in Fig. 2�b�,
the state transfer is optimal for zero detuning, but a quite
large detuning can be tolerated �the transfer is still almost
perfect as long as � is well within the frequency-sweeping
range ���. The variation in the biexciton binding energy 2�
has also little effect on the efficacy of the state transfer as
long as the intermediate exciton state is well above the

ground state and the biexciton state �in the rotating reference
frame� plus the frequency-sweeping range �see Fig. 2�b��.
We remark that in contrast to the processes of Rabi oscilla-
tion, the adiabatic transfer is largely independent of the pulse
area �A and �� and the pulse shape. This is an experimentally
crucial feature, as the control over pulse area is often not
exact under realistic conditions, which would make the trans-
ferred population lower than expected as in the ordinary two-
photon Rabi flop scheme.

It is also of interest to investigate on the relationship be-
tween the pulse duration �−1 �see Eq. �3�� and the interme-
diate exciton state population max�b�t��2. In Fig. 3, we plot
max�b�t��2 as a function of �, where for each � we choose
the pulse amplitude A to minimize max�b�t��2 while the state
transfer efficiency is guaranteed to be greater than 0.99. We
see a near-linear correlation. This can be understood since
the process completed in a short interval becomes simply a
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FIG. 4. �Color online� �a� State populations in the case of zero
dephasing �solid lines� and finite dephasing �dots�. �b� Final-state
populations as functions of the dephasing rate 
ij. The vertical dot-
ted line indicates the case of �a� for 
ij =3.0 ns−1.

FIG. 2. �Color online� Final population of the biexciton state as
a function of �a� the pulse amplitude A and the frequency-sweeping
range �� for fixed biexciton binding energy 2�=20 meV and pulse
detuning �=0 or �b� � and � for fixed A=6 meV and ��
=3 meV. The inverse pulse duration is �=0.6 meV�1 ps−1 and
total evolution time is 2T=160�−1�10 ps.
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FIG. 3. The maximum intermediate exciton state population as a
function of the inverse pulse duration. �=2.4 and �=10 meV are
fixed, while A is adjusted for different pulse duration to minimize
max�b�t��2 while the final biexciton population is �0.99.
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transfer via real excitation of the intermediate state
��g�→ �X�→ �XX��.

IV. EFFECTS OF DEPHASING

The analysis so far is less realistic in that we have ne-
glected the effect of dephasing present in QDs, which gen-
erally drives a pure state into a mixed state. We thus consider
the relaxation and dephasing of excitons and biexcitons,
which may be caused by spontaneous emission and electron-
phonon scattering.38,39 At low temperatures, we consider just
the spontaneous emission as the limiting factor of the quan-
tum operation.40 The spontaneous emission is modeled by an
additional Lindblad term36 in the master equation for density
matrix � as follows:

�t� = − i�H0,�� + L��� , �4�

where the Lindblad superoperator L is defined by

L��� = �
ij


ij

2
�2ij

† �ij − ijij
† � − �ijij

† � , �5�

with ij ��i��j� and 
i , j�= 
�XX� , �X�� or 
�X� , �g��, signifying
the transition from i to j.

In the case of CdSe/ZnSe QDs, with the suppression of
electron-phonon scattering at low temperatures, the dephas-

ing rate was determined to be 
ij �3.0 ns−1.6 Together with
�=10 meV and the pulse shape of Eq. �3�, the evolution of
different state populations are plotted in Fig. 4. It shows only
a slight reduction in the final population of �XX�, while those
of �X� and �g� increase.

V. CONCLUSION

We have studied the geometrical creation of biexcitons in
quantum dots via adiabatic state following under the driving
of a chirped pulse and demonstrated the robustness of the
process against uncertainties in parameters of the system and
the controlling pulse such as the pulse area, the pulse dura-
tion, the detuning, and the energy levels. The occupation of
the intermediate exciton state is largely avoided during the
adiabatic state transfer. Using the dephasing rate for CdSe/
ZnSe quantum dots, we showed that dephasing only causes a
slight reduction in efficiency. The geometrical control by a
chirped pulse may be extended to apply to implementation of
control gates of, e.g., superconducting qubits.35
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